Syllabus SM279 Multivariable Calculus

1. Affine Geometry of Rⁿ

- a. Lines Parametric
- b. Planes Parametric
- c. Subspaces

Review

- i. Linear Independence
- ii. Spanning
- iii. Bases
- iv. Dimension
- d. k-dimensional affine sets parametric
- e. Dot Product
- f. Implicit form for Affine sets
 - i. Hyperplanes
 - ii. Review of Solutions of Equations
- g. Convex Sets
- h. Open Balls
- i. Interior, Exterior and Boundary Points
- j. Open and Closed Sets
- 2. Functions from R^n to R^m .
 - a. Curves in Rⁿ.
 - b. Surfaces in Rⁿ
 - c. Linear Functions
 - i. Review of Matrix Operations
 - d. Rⁿ to R^m functions
 - e. Partial Derivatives
 - f. Derivative Matrix
 - g. Directional Derivative

- 3. Chain Rule
 - a. Chain Rule Theorem
 - b. Inverse Function Theorem
 - c. Implicit Function Theorem
- 4. Generalized Inner Products
 - a. Change of Coordinates
 - i. Review Coordinates
 - b. Perpendicular Subspaces
 - i. Review Rank-Nullity Theorem
 - c. Positive Definiteness
 - i. Review Determinants
 - ii. Review Gram- Schmidt Process
- 5. Unconstrained Optimization
 - a. Second Derivative Test
- 6. Constrained Optimization
 - a. Second Derivative Test
- 7. Systems of Differential Equations
 - b. Review Eigenvalues/Eigenvectors